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For several years we have been interested in the synthesis and 
thestudy of the structural properties of main group metallacycles.1 

These species are often conveniently available via transmetalation 
of a zirconacycle precursor.2 Molecules possessing a planar 
structure appear to have superior packing properties in the solid 
state. We therefore felt that zirconacycle 2 would be a useful 
precursor to the molecules in which we were interested. Treatment 
of I3 (Scheme 1) with 1 equiv of dibutylzirconocene, as a 
zirconocene transfer agent,4 unexpectedly failed to give 2,45 and 
instead, complex 3 was isolated in 55% yield as air-sensitive, 
orange crystals.6 

The nature of 3 is best described by the molecular orbital 
picture5"-7 where there are three alkyne to metal interactions, two 
of which involve donation from the alkynes' 7r-systems to the 
metal (ai + ir, b2 + ir), and one of which is back-bonding from 
the metal to the ir* system of the alkynes (a! + ir*) (Figure 1). 
One ramification of this orbital description is that each alkyne 
possesses full <r-bonding to the zirconium center, but there is only 
half the normal ir-back-bonding that is seen in the more 
conventional metallacyclopropenes; the two electrons in the a, + 
•K* orbital are shared equally between the two alkynes. This 
x-back-bonding is manifested in the characteristics of the identical 
alkynyl ligands, both of which display spectroscopic and structural 
features almost exactly halfway between those of free alkynes 
andzirconacyclopropenes. A consequence of this data {vide infra) 
is that 3 is difficult to describe by a single Lewis structure. Complex 
3 can be best represented as the superposition of the degenerate 
resonance contributors 3a and 3b, each of which implies a Zr(IV) 
with one dative alkyne ligand and one zirconacyclopropene 
moiety.8 That we were unable to "freeze out" any discrete 
zirconacyclopropene-alkyne complex by either low-temperature 
NMR or solid-phase IR supports the notion that 3a and 3b are 
equivalent resonance forms and not in rapid equilibrium. 
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Figure 1. Molecular orbital description of a metallocene with two r/2 

alkyne ligands.5"-7 

Figure 2. ORTEP diagram of 3 with selected bond distances and angles. 
Selected bond distances (A): Zr1-Ci, 2.346(4); Zn-C2, 2.390(4); Si1-
Ci, 1.854(4); C1-C2, 1.255(5); C2-C2', 2.319(7); C2-C3, 1.460(5). 
Selected bond angles (deg): Si1-C1-C2, 140.0(3); Ci-C2-C3, 155.2(4); 
C2-C3-C3', 108.9(2); Zr1-C1-C2,76.6(2); Zr1-C2-C1,72.7(2); C1-Zr1-
C2, 30.7(1). Primed atoms are at -x, v, '/2 - 2. 

An ORTEP representation of the structure resulting from an 
X-ray diffraction determination is shown in Figure 2. The 
molecule possesses a crystallographic Ci axis of symmetry. The 
effects of partial 7r-back-bonding are manifested by the fact that 
the C1-C2 bond distance of 1.258(5) A in 3 is approximately 
halfway between the value of 1.195(3) A seen in hexakis-
(trimethylsilylethynyl)benzene9 and the length of 1.302(9) A in 
zirconacyclopropene 610 (Figure 3). Further, in 3 the C2-C1-Si 
and C1-C2-C3 bond angles are similar to the analogous angles 
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Table 1. Comparison of Selected Bond Angles of Compounds 3-6 

compd 

3 
4 
5 
6 

bond a 

C2-Ci-Si 

140.0(3) 
148.2(2) 
140.8(3) 
143.5(6)/134.4(6) 

ngles, deg 
Ci-C 2-C3 
155.2(4) 
141.0(2) 
151.9(3) 
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in 4," 5,12 and 6 (Table 1). Consistent with this representation, 
no change, other than slight broadening, is observed in the 1H 
NMR spectrum at temperatures as low as -92 0C (toluene-dj). 
The IR spectrum exhibits only a single stretch in the alkyne region 
at 1816 cm-1. This signal is approximately midway between that 
observed for 1 at 2161 cm-1 and that seen in normal group 4 
metallacyclopropenes as in 4 at 1620 cm-1, 5 at 1686 cm-1, and 
6 at 1581 cm-1.13 Similarly, in the 13C NMR spectrum of 3, 
signals for only two alkynyl carbons are present at 143.3 and 
154.2 ppm. These resonances are roughly equidistant from those 
observed for their counterparts in 1 (98.4 and 103.3 ppm), and 
4 (177.4 and 181.0 ppm), 5 (213.0 and 219.6 ppm), and 6 (212.9 
ppm).13 

The reactions of 3 are also consistent with the above structural 
description (Scheme 2). For example, treatment of 3 with I2 
produces zirconocene diiodide and re-forms 1 in 88% yield.14 

Treatment of 3 with aqueous sulfuric acid gives enyne 7, in 92% 
yield.5a'14 This result is similar to that seen by Nugent, where 
hydrolysis of the product of the reaction of "titanocene" and 2,6-
octadiyne yielded (Z)-6-octen-2-yne, while the corresponding 
zirconacycle was isolated and structurally characterized.5a 
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The structure and reactivity of compound 3 address the 
mechanism of zirconocene-mediated reductive coupling. This 
process is thought to have three principal intermediates,5*'15 only 
two of which had been isolated: a zirconacyclopropene,10'11-16 a 
postulated intermediate complex of the metal and two alkynes, 
andazirconacyclopentadiene.5a'15a Molecular orbital calculations 
(shown in Figure l)5a-7 show that the intermediate complex 
possesses two <r-type metal-alkyne orbitals and one ir-type orbital. 
The implication of this model is that each alkyne possesses full 
<r-bonding, but only partial ir-back-bonding to the metal. Under 
normal circumstances this complex is unstable relative to the 
metallacyclopentadiene (Scheme 1), but in systems where the 
metallacyclopentadiene would be highly strained, the zircona-
cyclopropene-alkyne complex is stable.5a In accord with this 
proposal, 3 is not converted to 2 even when heated to 195 0C for 
5h. 

In summary, we have prepared, for the first time, a complex 
where zirconocene is bound to two alkynyl ligands. The structural 
and spectroscopic data shows that this compound is best described 
as shown in Scheme 1 and Figure 1. Further, we have 
demonstrated the viability of such a complex, which has been 
proposed as an intermediate in the zirconocene-induced reductive 
coupling of alkynes.5a We are continuing to examine the factors 
that affect these cyclizations and their use in the synthesis of 
main group metallacycles with interesting physical properties. 
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